## Accuracy

The words*exact*and

*perfect*do not appear here, as very few aspects of chemistry can be computed exactly. However, almost every aspect of chemistry can be described in a qualitative or approximate quantitative computational scheme.

Molecules consist of nuclei and electrons, so the methods of quantum mechanics apply. Computational chemists often attempt to solve the non-relativistic SchrÃ¶dinger equation, with relativistic corrections added, although some progress has been made in solving the fully relativistic Dirac equation. In principle, it is possible to solve the SchrÃ¶dinger equation in either its time-dependent or time-independent form, as appropriate for the problem in hand; in practice, this is not possible except for very small systems. Therefore, a great number of approximate methods strive to achieve the best trade-off between accuracy and computational cost.

Accuracy can always be improved with greater computational cost. Significant errors can present themselves in ab initio models comprising many electrons, due to the computational expense of full relativistic-inclusive methods. This complicates the study of molecules interacting with high atomic mass unit atoms, such as transitional metals and their catalytic properties. Present algorithms in computational chemistry can routinely calculate the properties of molecules that contain up to about 40 electrons with sufficient accuracy. Errors for energies can be less than a few kJ/mol. For geometries, bond lengths can be predicted within a few picometres and bond angles within 0.5 degrees. The treatment of larger molecules that contain a few dozen electrons is computationally tractable by approximate methods such as density functional theory (DFT).

## No comments:

## Post a Comment